KaTeX - Math

$$ ဆိုရင် အလည်မှာဖြစ်သွားမှာဖြစ်ပြီး ရိုးရိုး $ ဆိုရင်တော့ ရှေ့မှာပဲရှိနေမှာပါ။

$$ \begin{array}{l} E*{o 1}=\frac{1}{2}\left( { target }*{o 1}- { out }_{o 1}\right)^{2}=\frac{1}{2}(0.01-0.75136507)^{2}=0.274811083 \\ E_{o 2}=0.023560026 \\ E*{ {total }}=E*{o 1}+E\_{o 2}=0.274811083+0.023560026=0.298371109 \end{array} $$

Precipitation of barium sulfate: \({SO4^2- + Ba^2+ -> BaSO4 v}\)

_Precipitation of barium sulfate:_ \\({SO4^2- + Ba^2+ -> BaSO4 v}\\)

When $a \ne 0$, there are two solutions to $(ax^2 + bx + c = 0)$ and they are $$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$

When $a \ne 0$, there are two solutions to $(ax^2 + bx + c = 0)$ and they are
$$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$

$$\int*{a}^{b} x^2 dx$$

$$\int*{a}^{b} x^2 dx$$

$$ \frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{u^{s-1}}{e^{u}-1}\mathrm{d}u $$

$$
\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{u^{s-1}}{e^{u}-1}\mathrm{d}u
$$

$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$

$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$

$$ \frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{u^{s-1}}{e^{u}-1}\mathrm{d}u $$

$$
\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{u^{s-1}}{e^{u}-1}\mathrm{d}u
$$

$$ \begin{equation*} \left\lbrace \begin{aligned} x \equiv & a_1 \bmod m_{1}\ x \equiv & a_2 \bmod m_{2}\ & \vdots\ x \equiv & a_n \bmod m_{n}\ \end{aligned} \right. \end{equation*} $$

$$
\begin{equation*}
\left\lbrace
\begin{aligned}
	x \equiv & a_1 \bmod m_{1}\\
	x \equiv & a_2 \bmod m_{2}\\
	& \vdots\\
	x \equiv & a_n \bmod m_{n}\\
\end{aligned}
\right.
\end{equation*}
$$

$$ \begin{align*} a & = b \ X &\sim {\sf Norm}(10, 3) \ 5 & \le 10 \end{align*} $$

$$
\begin{align*}
a & = b \\
X &\sim {\sf Norm}(10, 3) \\
5 & \le 10
\end{align*}
$$

$\lim\limits_{n\rightarrow\infty}{\left(1+\frac{1}{n}\right)^n}$

$\lim
$\lim\limits_{n\rightarrow\infty}{\left(1+\frac{1}{n}\right)^n}$

$$\mathop {\lim }\limits_{x \to c} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to c} \frac{{f’\left( x \right)}}{{g’\left( x \right)}}$$

$$\mathop {\lim }\limits\_{x \to c} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits\_{x \to c} \frac{{f'\left( x \right)}}{{g'\left( x \right)}}$$